Positive solutions for a semilinear elliptic problem with critical exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Elliptic Problem with Critical Exponent and Positive Hardy Potential

where B1 = {x ∈ RN | |x| < 1} is the unit ball in RN (N ≥ 3), λ, μ > 0, 2∗ := 2N/(N − 2). When μ < 0, this problem has been considered by many authors recently (cf. [5, 6, 7, 8]). But when μ > 0, this problem has not been considered as far as we know. In fact, the existence of nontrivial solution for (1.1) when μ > 0 is an open problem which was imposed in [7]. In this paper, we get the followi...

متن کامل

Bifurcation of Positive Solutions for a Semilinear Equation with Critical Sobolev Exponent

In this note we consider bifurcation of positive solutions to the semilinear elliptic boundary-value problem with critical Sobolev exponent −∆u = λu− αu + u −1, u > 0, in Ω, u = 0, on ∂Ω. where Ω ⊂ Rn, n ≥ 3 is a bounded C2-domain λ > λ1, 1 < p < 2∗ − 1 = n+2 n−2 and α > 0 is a bifurcation parameter. Brezis and Nirenberg [2] showed that a lower order (non-negative) perturbation can contribute t...

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Solutions of an Elliptic System with a Nearly Critical Exponent

This problem has positive solutions for ǫ > 0 (with pqǫ > 1) and no non-trivial solution for ǫ ≤ 0. We study the asymptotic behaviour of least energy solutions as ǫ → 0. These solutions are shown to blow-up at exactly one point, and the location of this point is characterized. In addition, the shape and exact rates for blowing up are given. Résumé. Considéré le problème −∆uǫ = v p ǫ vǫ > 0 en Ω...

متن کامل

Existence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent

and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 1996

ISSN: 0362-546X

DOI: 10.1016/0362-546x(95)00059-5